OKI Semiconductor

ML66517 Family

Preliminary

This version: Nov. 1999 Previous version: Aug. 1999

16-Bit Microcontroller

GENERAL DESCRIPTION

The ML66517 family of highly functional CMOS 16-bit single chip microcontrollers utilizes the nX-8/500S, Oki's proprietary CPU core.

Each device includes capture input with an internal digital filter, 10-bit A/D converter, a number of timers, and dedicated 3-phase PWM (6 outputs) function capable of generating and controlling of AC/DC motor driving waveforms.

By means of the internal dedicated function for motor control, this general-purpose microcontroller is optimally suited for DC and AC motor control applications for energy saving. And the internal hardware multiplier allows high-speed arithmetic operations to be executed. And also the internal clock multiplication circuit can reduce the source frequency noise so that high-speed operations can be performed.

The flash ROM versions (ML66Q517 and ML66Q515) programmable with a single 5V power supply are also included in the family. These versions are easily adaptable to quick specification changes and to new product versions.

APPLICATIONS

Air conditioner or inverter control Motor control for FA equipment

ORDERING INFORMATION

Order Code or Product Name	Package	Remark	
ML66514-RB	80-pin plastic QFP	5 V mask ROM version	
ML66Q515-RB	(QFP 80-P-1420-0.80-BK)	5 V flash ROM version	
ML66517-GA	64-pin plastic SDIP	5 V mask ROM version	
ML66Q517-GA	(SDIP 64-P-750-1.778)	MSM66517 flash ROM version	

FEATURES

Name	ML66514	ML66517			
Operating temperature	−40°C to	85°C			
Power supply voltage/ Maximum frequency	$V_{DD} = 4.5 \text{ to } 5.5$	V/f = 25 MHz			
Minimum instruction execution time	80 nsec @25 MHz				
Internal ROM size (max. external)	32 KB (64 KB)	64 KB (128 KB)			
Internal RAM size (max. external)	1 KB (64 KB)	2 KB (64 KB)			
I/O ports	46 I/O pins (with pull-up resistors, programmable at the bit level), 4 input pins	56 I/O pins (with pull-up resistors, programmable at the bit level), 8 input pins			
	16-bit free-running	g counter × 1ch			
	Compare output/cap	pture input × 2ch			
	16-bit timer (auto-relo	ad/timer out) × 1ch			
Timers	8-bit auto reload timer × 2ch	8-bit auto reload timer × 4ch (can also be used as 16-bit auto reload timer × 1ch and 8-bit auto reload timer × 2ch)			
	Capture × 2ch				
	8-bit auto reload timer × 2ch				
	(also functions as serial communication baud rate generators)				
	8-bit auto reload timer × 1ch (also functions as a watchdog timer)				
	8-bit PWM × 2ch (can also be used as 16-bit PWM × 1ch)	8-bit PWM × 4ch (can also be used as 16-bit PWM × 2ch)			
Serial port	Synchronous/L	JART × 2ch			
A/D converter	10-bit × 4ch	10-bit × 8ch			
3-phase PWM (AC motor control)	Availa	ble			
3-phase PWM (DC motor control)	Availa	ble			
External interrupt	Non-Maskable × 1ch	Non-Maskable × 1ch			
	Maskable × 2ch	Maskable × 4ch			
Interrupt priority	3 leve				
Others	Multiplexed address and data buses				
	Multiplication	calculator			
Flash ROM version	ML66Q515 (ROM = 64 KB, RAM = 2 KB)	ML66Q517			

SPECIAL FEATURES

1. High-performance CPU

The family includes the high-performance CPU, powerful bit manipulation instruction set, full symmetrical addressing mode, and ROM WINDOW function, and also provides the best optimized C compiler support.

2. 3-phase PWM circuit for generating motor drive waveforms

The device includes a 16-bit three-phase PWM (six outputs) circuit designed specifically for generating AC three-phase motor or DC three-phase brushless motor drive waveforms. PWM and level outputs can be switched by compare and match circuitry and software, and the compare and match circuitry can switch the outputs in real time.

The device has circuitry to fix the three-phase outputs at an inactive level by inputting malfunction signals from a motor at the specific pin.

3. Capture inputs with digital filter filters

The device has two channels of capture inputs with 3/4 digital filters. The device is best suited to event interval measurement, pulse width measurement, etc. in a high noise environment such as motor control. An optimum filter can be selected according to noise width since a sampling interval of an input signal can be selected. A digital filter OFF mode can also be selected.

4. High-speed multiplier

The device includes a dedicated high-speed multiplier.

The calculation time, 16 bits \times 16 bits = 32 bits, is 200 ns (f = 25 MHz).

5. Clock multiplication circuit

The device includes a clock multiplication circuit in which the clock can be selected as a source clock (PLL OFF), $1 \times \text{clock}$, $2 \times \text{clock}$, or $4 \times \text{clock}$.

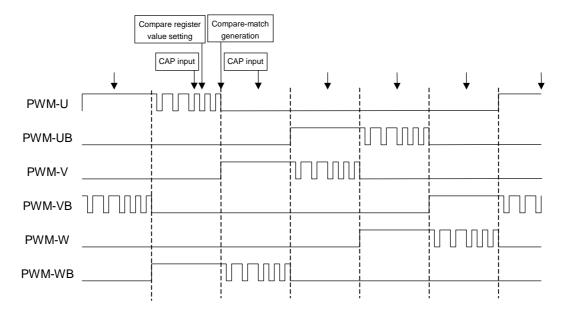
Therefore, the use of a low frequency oscillator (external clock) allows the device to internally operate at a high speed, which achieves noise reduction and lower power consumption.

6. Flash memory version programmable with a single power supply

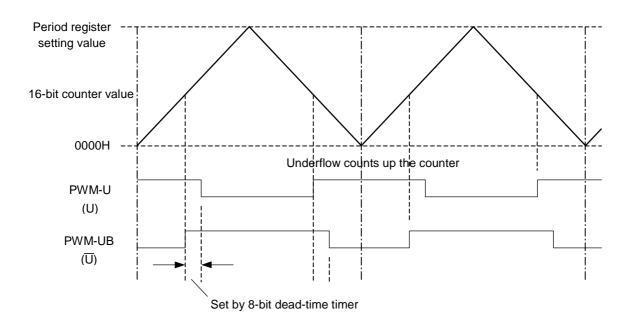
In addition to the mask ROM versions, the family includes the versions (ML66Q517 and ML66Q515) with 64 KB flash memory that can be programmed with a single 5 V supply.

7. A high-precision A/D converter

The device has a high precision 10-bit A/D converter with eight channels.

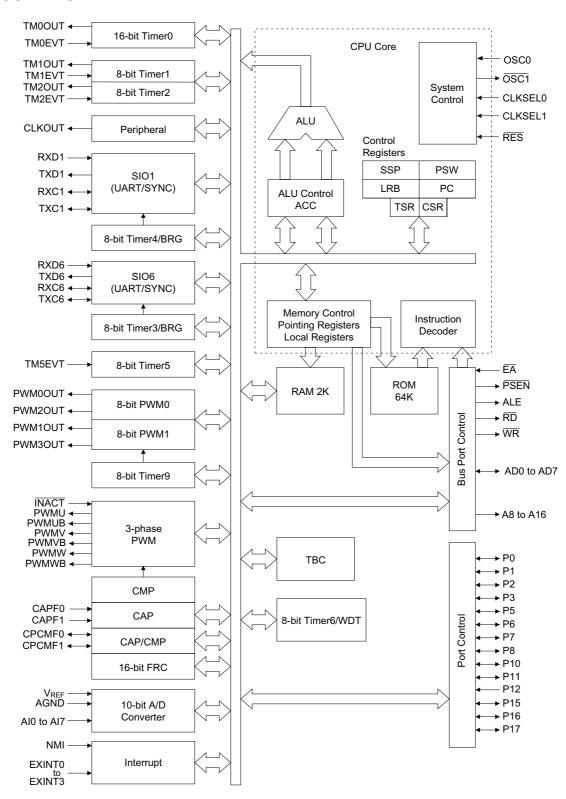

An independent result register for each channel provides easy accessibility by software.

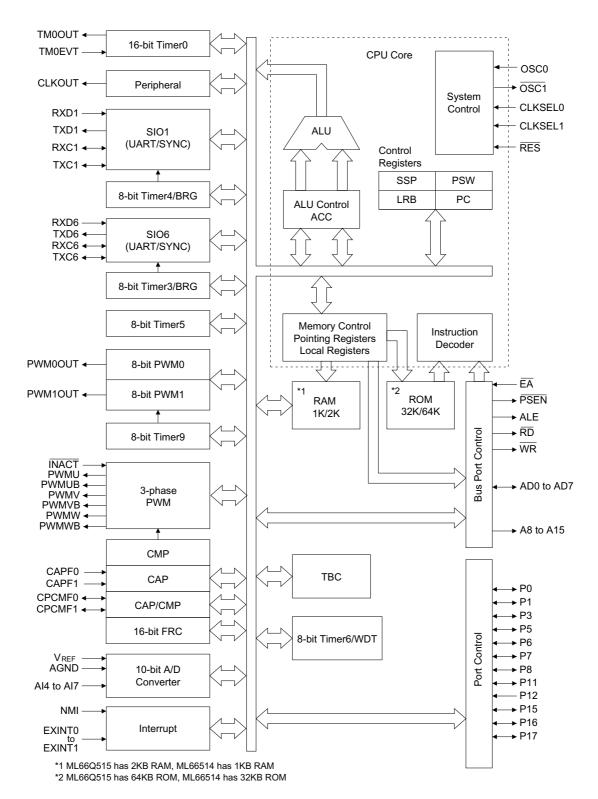
The A/D converter is activated in a channel select mode, and automatic conversion is also implemented in a scan mode which scans from any designated channel to the last channel (ch 7).


8. Programmable pull-up resistors

Building the pull-up resistors into the chip contributes to overall design compactness. Making them programmable on a per-bit basis allows complete flexibility in circuit board layout and system design. These programmable pull-up resistors are available for all I/O pins not already assigned specific functions (such as the oscillator connection pins).

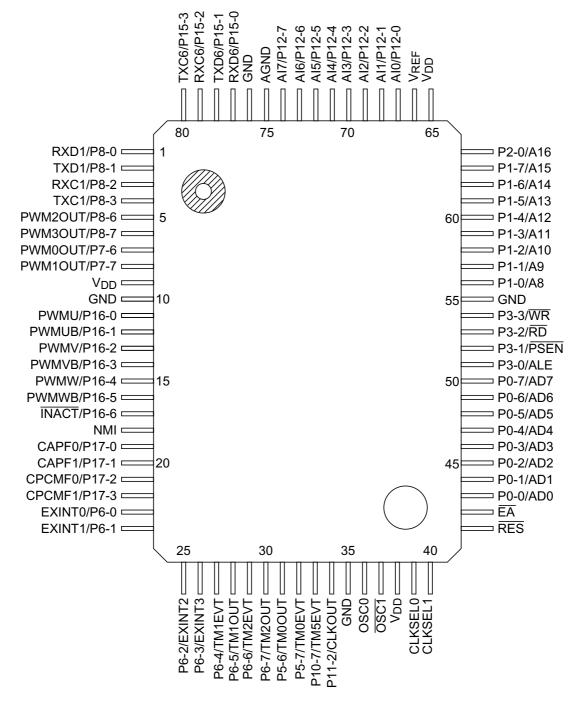
PWM output switching every 60° of motor turn using the compare-out timer


PWM Output Timing (DC Motor Control)

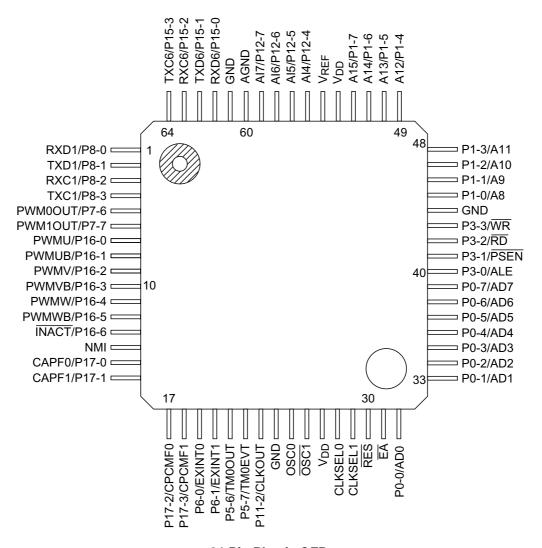

(Only U and $\overline{\text{U}}$ output signals are indicated above)

PWM Output Timing (AC Motor Control)

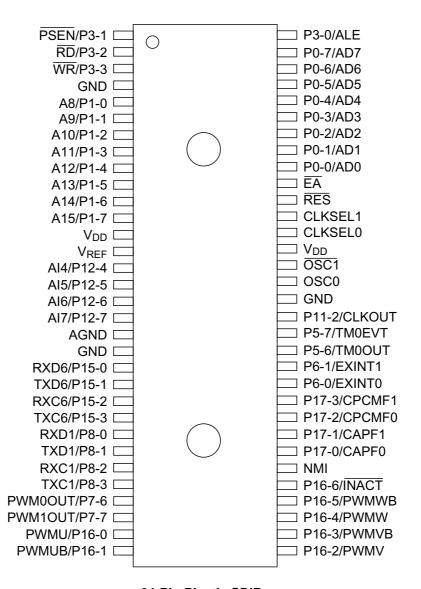
BLOCK DIAGRAM



ML66517/ML66Q517 Block Diagram


ML66Q515/ML66514 Block Diagram

PIN CONFIGURATION (TOP VIEW)


80-Pin Plastic QFP

ML66517/ML66Q517 Pin Configuration

64-Pin Plastic QFP

ML66Q515/ML66514 Pin Configuration

64-Pin Plastic SDIP

ML66Q515/ML66514 Pin Configuration

PIN DESCRIPTIONS

In the Type column, "I" indicates an input pin, "O" indicates an output pin, and "I/O" indicates an I/O pin.

ML66517/ML66Q517 Pin Descriptions

		Description					
Function	Symbol		Deimonostonostino		O d - m · f · m · ti - m		
		Туре	Primary function	Туре	Secondary function		
	P0_0/AD0		8-bit I/O port		External memory access		
	to	I/O	Pull-up resistors can be	I/O	Address output/data I/O port		
	P0_7/AD7		specified for each individual bit				
	P1_0/A8	1/0	8-bit I/O port	_	External memory access		
	to P1_7/A15	I/O	Pull-up resistors can be specified for each individual bit	0	Address output port		
	//		1-bit I/O port		External memory access		
	P2_0/A16	I/O	Pull-up resistors can be	0	Address output port		
			specified for each individual bit				
	D2 O/ALE		4-bit I/O port	0	External memory access		
	P3_0/ALE		10 mA sink capability Pull-up resistors can be	O	Address latch enable signal output pin		
	P3_1/PSEN		specified for each individual bit		External program memory		
		I/O		0	access		
					Read strobe output pin		
Port	P3_2/RD			0	External memory access Read strobe output pin		
Port	P3_3/WR			0	External memory access Write strobe output pin		
	P5_6/TM0OUT		2-bit I/O port	0	Timer 0 timer output pin		
	P5_7/TM0EVT	I/O	Pull-up resistors can be specified for each individual bit	I	Timer 0 external event input pin		
	P6_0/EXINT0		8-bit I/O port	I	External interrupt 0 input pin		
	P6_1/EXINT1		Pull-up resistors can be	I	External interrupt 1 input pin		
	P6_2/EXINT2		specified for each individual bit	I	External interrupt 2 input pin		
	P6_3/EXINT3	1/0		I	External interrupt 3 input pin		
	P6_4/TM1EVT	1/0		I	Timer 1 external event input pin		
	P6_5/TM1OUT			0	Timer 1 timer output pin		
	P6_6/TM2EVT			I	Timer 2 external event input pin		
	P6_7/TM2OUT			0	Timer 2 timer output pin		
	P7_6/PWM0OUT		2-bit I/O port	0	PWM0 output pin		
	P7_7PWM1OUT	I/O	Pull-up resistors can be specified for each individual bit	0	PWM1 output pin		

ML66517/ML66Q517 Pin Descriptions (Continued)

		Description					
Function	Symbol		Primary function		Secondary function		
		Туре		Туре			
	P8_0/RXD1		6-bit I/O port	I	SIO1 receive data input pin		
	P8_1/TXD1		Pull-up resistors can be	0	SIO1 transmit data output pin		
	P8_2/RXC1	1/0	specified for each individual bit	I/O	SIO1 receive clock I/O pin		
	P8_3/TXC1	I/O		I/O	SIO1 transmit clock I/O pin		
	P8_6/PWM2OUT			0	PWM2 output pin		
	P8_7PWM3OUT			0	PWM3 output pin		
	P10_7/TM5EVT	I/O	1-bit I/O port Pull-up resistors can be specified	I	Timer 5 external event input pin		
P11_2/CLKOUT P12_0/AI0 to P12_7/AI7	I/O	1-bit I/O port Main clock p		Main clock pulse output pin			
	to	8-bit input port		I	A/D converter analog input port		
	P15_0/RXD6		4-bit I/O port	ı	SIO6 receive data input pin		
Port	P15_1/TXD6	1/0	Pull-up resistors can be specified for each individual bit	0	SIO6 transmit data output pin		
	P15_2/RXC6	I/O		I/O	SIO6 receive clock I/O pin		
	P15_3/TXC6			I/O	SIO6 transmit clock I/O pin		
	P16_0/PWMU		7-bit I/O port	0	3-phase PWMU output pin		
	P16_1/PWMUB		Pull-up resistors can be	0	3-phase PWMUB output pin		
	P16_2/PWMV		specified for each individual bit	0	3-phase PWMV output pin		
	P16_3/PWMVB	I/O		0	3-phase PWMVB output pin		
	P16_4/PWMW			0	3-phase PWMW output pin		
	P16_5/PWMWB			0	3-phase PWMWB output pin		
	P16_6/INACT			I	Abnormality detect input pin		
	P17_0/CAPF0		4-bit I/O port	I	Capture 0 input pin		
	P17_1/CAPF1		Pull-up resistors can be	I	Capture 1 input pin		
	P17_2/CPCMF0	I/O	specified for each individual bit	I/O	Capture 0 input/compare 0 output pin		
	P17_3/CPCMF1			I/O	Capture 1 input/compare 1 output pin		

ML66517/ML66Q517 Pin Descriptions (Continued)

Function	Symbol	Туре	Description
	V _{DD}	I	Power supply pin Connect all V _{DD} pins to the power supply.*
Power supply	GND	I	GND pin Connect all GND pins to GND.*
	V_{REF}	I	Analog reference voltage pin
	AGND	I	Analog GND pin
	OSC0	I	Main clock oscillation input pin Connect to a crystal or ceramic oscillator. Or, input an external clock.
Oscillation	OSC1	0	Main clock oscillation output pin Connect to a crystal or ceramic oscillator. The clock output is opposite in phase to OSC0. Leave this pin unconnected when an external clock is used.
	CLKSEL0	ı	Clock multiplication factor select pin
	CLKSEL1	I	Clock multiplication factor is selected from source oscillation (PLL OFF), source oscillation \times 2, or source oscillation \times 4
Reset	RES	I	Reset input pin
	NMI	ı	Non-maskable interrupt input pin
Others	ĒĀ	ı	External program memory access input pin If the EA pin is enabled (low level), the internal program memory is masked and the CPU executes the program code in external program memory all address space.

^{*} Each of the family devices has unique pattern routes for the internal power and ground. Connect the power supply voltage to all V_{DD} pins and the ground potential to all GND pins. If a device may have one or more V_{DD} or GND pins to which the power supply voltage or the ground potential is not connected, it can not be guaranteed for normal operation.

ML66Q515/ML66514 Pin Descriptions

		Description					
Function	Symbol	Туре	Primary function	Туре	Secondary function		
	P0_0/AD0 to P0_7/AD7	I/O	8-bit I/O port Pull-up resistors can be specified for each individual bit	I/O	External memory access Address output/Data I/O port		
	P1_0/A8 to P1_7/A15	I/O	8-bit I/O port Pull-up resistors can be specified for each individual bit	0	External memory access Address output port		
	P3_0/ALE		4-bit I/O port 10mA sink capability Pull-up resistors can be	0	External memory access Address latch enable signal output pin		
P3_2/	P3_1/PSEN	I/O	specified for each individual bit	0	External program memory access Read strobe output pin		
	P3_2/RD			0	External memory access Read strobe output pin		
	P3_3/WR			0	External memory access Write strobe output pin		
	P5_6/TIM0OUT		2-bit I/O port	0	Timer 0 timer output pin		
	P5_7/TIM0EVT	I/O	Pull-up resistors can be specified for each individual bit	I	Timer 0 external event input pin		
Port	P6_0/EXINT0		2-bit I/O port	1	External interrupt 0 input pin		
TOIL	P6_1/EXINT1	I/O	Pull-up resistors can be specified for each individual bit	ı	External interrupt 1 input pin		
	P7_6/PWM0OUT		2-bit I/O port	0	PWM0 output pin		
	P7_7/PWM1OUT	I/O	Pull-up resistors can be specified for each individual bit	0	PWM1 output pin		
	P8_0/RXD1		4-bit I/O port	I	SIO1 receive data input pin		
	P8_1/TXD1	I/O	Pull-up resistors can be	0	SIO1 transmit data output pin		
	P8_2/RXC1	1/0	specified for each individual bit	I/O	SIO1 receive clock I/O pin		
	P8_3/TXC1			I/O	SIO1 transmit clock I/O pin		
	P11_2/CLKOUT	I/O	1-bit I/O port Pull-up resistors can be specified	0	Main clock pulse output pin		
	P12_4/AI4 to P12_7/AI7	I	4-bit input port	ı	A/D converter analog input port		
	P15_0/RXD6		4-bit I/O port	ı	SIO6 receive data input pin		
	P15_1/TXD6	1/0	Pull-up resistors can be	0	SIO6 transmit data output pin		
	P15_2/RXC6	I/O	specified for each individual bit	I/O	SIO6 receive clock I/O pin		
	P15_3/TXC6			I/O	SIO6 transmit clock I/O pin		

ML66Q515/ML66514 Pin Descriptions (Continued)

		Description					
Function	Symbol		Primary function		Secondary function		
		Туре	Filliary function	Туре	Secondary function		
	P16_0/PWMU		7-bit I/O port	0	3-phase PWMU output pin		
	P16_1/PWMUB		Pull-up resistors can be	0	3-phase PWMUB output pin		
	P16_2/PWMV		specified for each individual bit	0	3-phase PWMV output pin		
	P16_3/PWMVB	I/O	Dit	0	3-phase PWMVB output pin		
	P16_4/PWMW			0	3-phase PWMW output pin		
	P16_5/PWMWB			0	3-phase PWMWB output pin		
Port	P16_6/INACT			I	Abnormality detect input pin		
	P17_0/CAPF0		4-bit I/O port	I	Capture 0 input pin		
	P17_1/CAPF1		Pull-up resistors can be	ı	Capture 1 input pin		
	P17_2/CPCMF0	I/O	specified for each individual bit	I/O	Capture 0 input/compare 0 output pin		
	P17_3/CPCMF1			I/O	Capture 1 input/compare 1 output pin		

ML66Q515/ML66514 Pin Descriptions (Continued)

Function	Symbol	Туре	Description
	V_{DD}	ı	Power supply pin Connect all V _{DD} pins to the power supply.*
Power supply	GND	I	GND pin Connect all GND pins to GND.*
	V_{REF}	I	Analog reference voltage pin
	AGND	I	Analog GND pin
	OSC0	ı	Main clock oscillation input pin Connect to a crystal or ceramic oscillator. Or, input an external clock.
Oscillation	ŌSC1	0	Main clock oscillation output pin Connect to a crystal or ceramic oscillator. The clock output is opposite in phase to OSC0. Leave this pin unconnected when an external clock is used.
	CLKSEL0	I	Clock multiplication factor select pin
	CLKSEL1 I		Clock multiplication factor is selected from source oscillation (PLL OFF), source oscillation \times 2, or source oscillation \times 4
Reset	RES	I	Reset input pin
	NMI	I	Non-maskable interrupt input pin
Others	ĒĀ	ı	External program memory access input pin If the EA pin is enabled (low level), the internal program memory is masked and the CPU executes the program code in external program memory all address space.

^{*} Each of the family devices has unique pattern routes for the internal power and ground. Connect the power supply voltage to all V_{DD} pins and the ground potential to all GND pins. If a device may have one or more V_{DD} or GND pins to which the power supply voltage or the ground potential is not connected, it can not be guaranteed for normal operation.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Co	ndition	Rating	Unit
Digital power supply voltage	V_{DD}			-0.3 to +7.0	V
Input voltage	Vı	0.115		-0.3 to V_{DD} +0.3	V
Output voltage	Vo		AGND = 0 V = 25°C	-0.3 to V_{DD} +0.3	V
Analog reference voltage	V_{REF}	1a = 25 C		-0.3 to V_{DD} +0.3	V
Analog input voltage	V_{AI}			–0.3 to V_{REF}	V
		T- 0500	80-pin QFP	600	
Power dissipation	P_{D}	Ta = 85°C per package	64-pin QFP	520	mW
		per package	64-pin SDIP	1280	
Storage temperature	T _{STG}	_		-50 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition		Range	Unit	
Digital power supply voltage	V_{DD}	f _{osc} ≤ 25 MHz		4.5 to 5.5	V	
Analog reference voltage	V_{REF}		_	$V_{DD} - 0.3$ to V_{DD}	V	
Analog input voltage	V_{AI}		_	AGND to V_{REF}	V	
Memory hold voltage	V_{DDH}	fos	_C = 0 Hz	2.0 to 5.5	V	
lateral an antimate for more	4	PLL (multiplier) OFF		2 to 25	MHz	
Internal operating frequency	f _{osc}	PLL (m	nultiplier) ON	20 to 25	IVITZ	
Ambient temperature	Та		_	-40 to +85	°C	
		MOS load		20	_	
			P3	6		
Fan out	N		P0, P16	2		
	.•	TTL load	P1, P2, P5 to P8, P10, P11, P15, P17	1	_	

ALLOWABLE OUTPUT CURRENT

(1) ML66517/ML66Q517 (80-pin QFP)

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Pin	Symbol	Min.	Тур.	Max.	Unit
"H" output pin (1 pin)	All input pins	I _{OH}	1	1	-2	
"H" output pins (sum total)	Sum total of all output pins	Σ_{IOH}		_	-50	
"I " output pip (1 pip)	P3		_	_	10	
"L" output pin (1 pin)	Other ports	I _{OL}	-	1	5	
	Sum total of P0, P3				60	mA
	Sum total of P1, P2					
"L" output pins	Sum total of P7, P8, P15	Σ_{IOL}	_	_	50	
(sum total)	Sum total of P5, P6, P10, P11, P16, P17	∠IOL	_		30	
	Sum total of all output pins				100	

(2) ML66Q515/ML66514 (64-pin QFP/SDIP)

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Ta} = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Pin	Symbol	Min.	Тур.	Max.	Unit
"H" output pin (1 pin)	All input pins	I _{OH}	_	1	-2	
"H" output pins (sum total)	Sum total of all output pins	Σ_{IOH}	_	_	-20	
"L" output pin (1 pin)	P3	1	_	_	10	
	Other ports	I _{OL}	_		5	mΛ
	Sum total of P0, P3				50	mA
"I " output pino	P1					
"L" output pins (sum total)	Sum total of P5 to P8, P11, P15, P17	Σ_{IOL}	_	_	30	
	Sum total of all output pins				60	

Note: Each of the family devices has unique pattern routes for the internal power and ground. Connect the power supply voltage to all V_{DD} pins and the ground potential to all GND pins. If a device may have one or more V_{DD} or GND pins to which the power supply voltage or the ground potential is not connected, it can not be guaranteed for normal operation.

ELECTRICAL CHARACTERISTICS

DC Characteristics

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Ta} = -40 \text{ to } +80^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.		Unit		
"H" input voltage *1	•		0.44 V _{DD}	—	1			
"H" input voltage *2 to *8	V_{IH}	_	0.80 V _{DD}		$V_{DD} + 0.3$			
"L" input voltage *1			-0.3	_	0.16 V _{DD}			
"L" input voltage *2 to *8	V_{IL}	_	-0.3	_	0.2 V _{DD}			
"H" output voltage *1, *4, *5		$I_{O} = -400 \ \mu A$	$V_{DD} - 0.4$		_			
"H" output voltage *1, *4, *5	V	$I_0 = -2.0 \text{ mA}$	$V_{DD} - 0.6$		_			
"H" output voltage *2	V _{OH}	$I_0 = -200 \ \mu A$	$V_{DD} - 0.4$	_	V _{DD} + 0.3 V _{DD} + 0.3 V _{DD} + 0.3 O.16 V _{DD} O.2 V _{DD} O.4 O.8 O.4 O.9			
— output voltage 2		$I_0 = -2.0 \text{ mA}$	$V_{DD} - 0.6$	_	_	V		
"L" output voltage *1, *5		$I_0 = 3.2 \text{ mA}$	_		0.4			
		$I_0 = 5.0 \text{ mA}$	_	_	0.8			
"L" output voltage *4	V _{OL}	$I_0 = 3.2 \text{ mA}$	_	_	0.4			
	V OL	$I_0 = 10.0 \text{ mA}$	_	_	1.0			
"L" output voltage *2		$I_0 = 1.6 \text{ mA}$	_	_	0.4			
		$I_0 = 5.0 \text{ mA}$	_	_	0.8			
Input leakage current*3, *7			_	_	1/–1	μA		
Input current *6	I_{IH}/I_{IL}	$V_1 = V_{DD}/0 V$	_	_	1/–250			
Input current *8			_	_	15/–15			
Output leakage current *1, *2, *4, *5	I _{LO}	$V_O = V_{DD}/0 V$	1	1	± 10	μΑ		
Pull-up resistance	R_{pull}	$V_1 = 0 V$	25	50	100	kΩ		
Input capacitance	Cı	f = 1 MHz, Ta = 25°C	_	5	_	pF		
Output capacitance	Co	T = T IVIDZ, Ta = 25 C		7	_	рг		
Analog reference supply current	ı	During A/D operation	_	_	4	mA		
	I _{REF}	When A/D is stopped	_	_	10	μΑ		
Supply current (STOP mode)	1	ML66Q517/Q515 *9	_	20	900	μA		
	I _{DDS}	ML66517/514 *9		1	50	μΛ		
Supply current (HALT mode)	I _{DDH}	f = 25 MHz, No load	_	30	40	mA		
Supply current	I _{DD}	1 = 25 IVIAZ, NO IOAU — 40		40	60	IIIA		

^{*1:} Applicable to P0

^{*2:} Applicable to P1, P2, P6, P7, P8, P10, P11, P15, P17

^{*3:} Applicable to P12

^{*4:} Applicable to P3

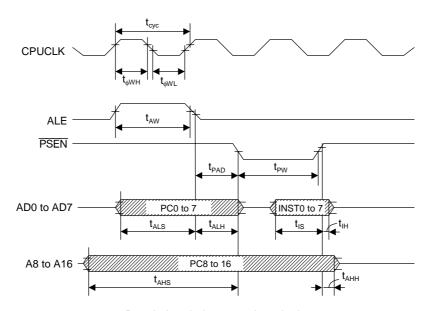
^{*5:} Applicable to P16

^{*6:} Applicable to $\overline{\text{RES}}$

^{*7:} Applicable to $\overline{\mathsf{EA}}$, NMI, CLKSEL0, CLKSEL1

^{*8:} Applicable to OSC0

^{*9:} Ports used as inputs are at V_{DD} or 0 V. Other ports are unloaded.

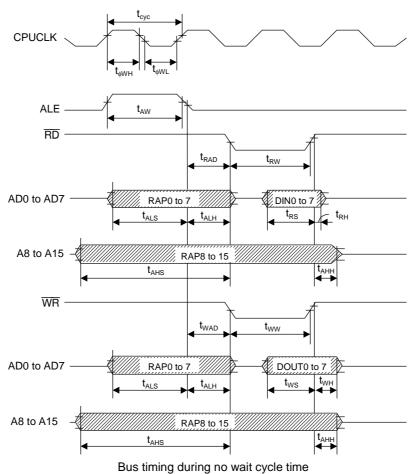

AC Characteristics

(1) External program memory control

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Ta} = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	t _{cyc}	f _{OSC} = 25 MHz	40	_	
Clock pulse width (HIGH level)	$t_{\phi WH}$		13	_	
Clock pulse width (LOW level)	$t_{\scriptscriptstyle \phiWL}$		13	_	
ALE pulse width	t _{AW}		2t	_	
PSEN pulse width	t _{PW}		2tφ – 18	_	
PSEN pulse delay time	t _{PAD}		tφ − 5	_	no
Low address setup time	t _{ALS}	$C_L = 50 pF$	2t	_	ns
Low address hold time	t _{ALH}		tφ − 13	_	
High address setup time	t _{AHS}		3t∳ − 30	_	
High address hold time	t _{AHH}		-8	_	
Instruction setup time	t _{IS}		30	_	
Instruction hold time	t _{IH}		-8	tφ − 3	

Note: $t\phi = t_{cyc}/2$


Bus timing during no wait cycle time

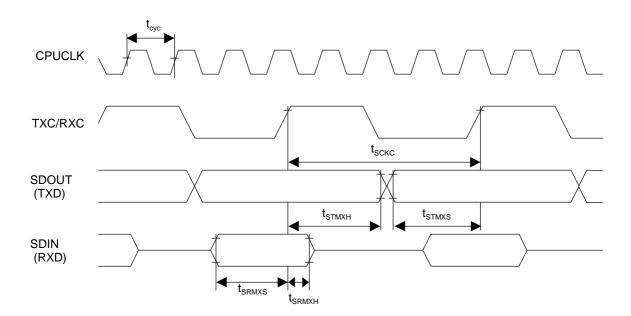
(2) External data memory control

$(V_{DD} = 4.5 \text{ to } 5.5)$	5 V, Ta = –40 to +85°C	;)
----------------------------------	------------------------	----

			(100	,	
Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	t _{cyc}	f _{OSC} = 25 MHz	40	_	
Clock pulse width (HIGH level)	t _{oWH}		13	_	
Clock pulse width (LOW level)	$ \begin{array}{c c} Symbol & Condition \\ \hline & t_{cyc} & f_{OSC} = 25 \text{ MHz} \\ \hline & t_{\phi WH} & \\ \hline & t_{\phi WL} & \\ \hline & t_{AW} & \\ \hline & t_{RW} & \\ \hline & t_{WW} & \\ \hline & t_{RAD} & \\ \hline & t_{ALS} & \\ \hline & t_{ALH} & \\ \hline & t_{AHH} & \\ \hline & t_{RS} & \\ \hline & t_{RH} & \\ \hline & t_{WS} & \\ \hline \end{array} $	13	_		
ALE pulse width	t _{AW}		2tφ – 10	_	
RD pulse width	t _{RW}		2tφ – 18	_	
WR pulse width	t _{ww}		2tφ – 18	_	
RD pulse delay time	t _{RAD}	C _L = 50 pF	tφ – 5	_	
WR pulse delay time	t _{WAD}		tφ – 5	_	
Low address setup time		$C_L = 50 pF$	2tφ – 15	_	ns
Low address hold time	t _{ALH}		tφ – 13	_	
High address setup time	t _{AHS}		3tφ - 30	_	
High address hold time	t _{AHH}		tφ – 3	_	
Read data setup time	t _{RS}	f _{OSC} = 25 MHz	30	_]
Read data hold time	t _{RH}		0	tφ − 3	
Write data setup time	t _{WS}		2t\phi - 30		
Write data hold time	t _{WH}		tφ − 3		

Note: $t\phi = t_{cyc}/2$

20/28

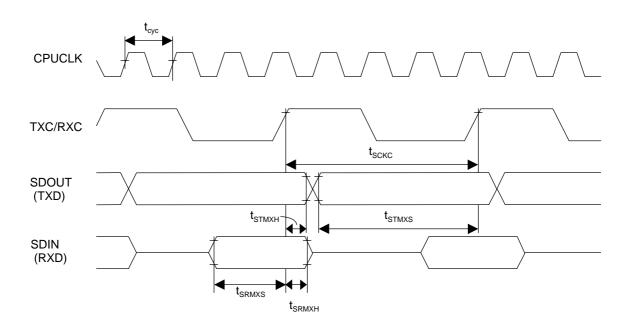

(3) Serial port control

Master mode (Clock synchronous serial port)

 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Ta} = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	t _{cyc}	fOSC = 25 MHz	40	_	
Serial clock cycle time	tSCKC		4 t _{cyc}	_	
Output data setup time	tSTMXS		2t ϕ – 5	_	
Output data hold time	tSTMXH	CL = 50 pF	5tφ − 10	_	ns
Input data setup time	tSRMXS		13	_	
Input data hold time	tSRMXH		0	_	

Note: $t\phi = t_{cyc}/2$

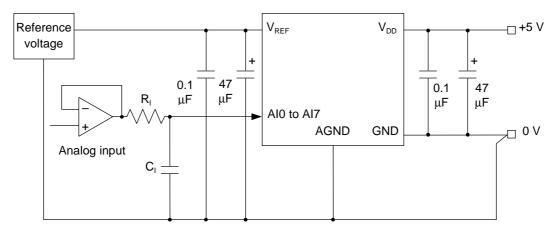


Slave mode (Clock synchronous serial port)

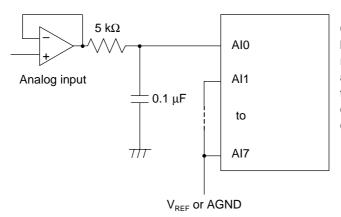
 $(V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{Ta} = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	t _{cyc}	fOSC = 25 MHz	40	_	
Serial clock cycle time	tSCKC		4 t _{cyc}	_	
Output data setup time	tSTMXS		2t	_	no
Output data hold time	tSTMXH	CL = 50 pF	4t	_	ns
Input data setup time	tSRMXS		13	_	
Input data hold time	tSRMXH		3	_	

Note: $t\phi = t_{cyc}/2$


Measurement points for AC timing

A/D Converter Characteristics


(Ta = -40 to	+85°C, V _{DD}	= 4.5 to 5.5	V. AGND =	: GND = 0 \	V)
٠,				.,	· · · ·	٠,

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	n	Refer to measurement	_	10	_	Bit
Linearity error	EL	circuit 1	_	_	±3	
Differential linearity error	E _D	Analog input source	_	_	±2	
Zero scale error	E _{zs}	impedance RI ≤ 5 kΩ	_	_	+3	1.00
Full-scale error	E _{FS}	$t_{CONV} = 10.7 \ \mu s$	_	_	-3	LSB
Cross talk	E _{CT}	Refer to measurement circuit 2	_	_	±1	
Conversion time	t _{CONV}	Set according to ADTM set data	10.7	_	_	μs/ch

 $R_{_{I}}$ (impedance of analog input source) ${\leq}5~k\Omega$ $C_{_{I}}{\cong}~0.1~\mu F$

Measurement Circuit 1

Cross talk is the difference between the A/D conversion results when the same analog input is applied to Al0 through Al7 and the A/D conversion results of the circuit to the left.

Measurement Circuit 2

Definition of Terminology

1. Resolution

Resolution is the value of minimum discernible analog input.

With 10 bits, since $2^{10} = 1024$, resolution of $(V_{REF} - AGND) \div 1024$ is possible.

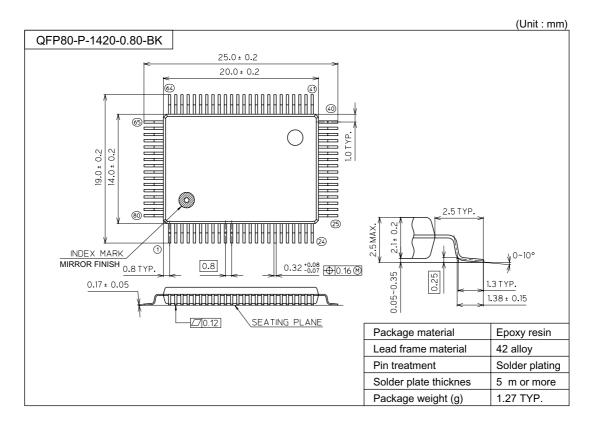
2. Linearity error

Linearity error is the difference between ideal conversion characteristics and actual conversion characteristics of a 10-bit A/D converter (not including quantization error).

Ideal conversion characteristics can be obtained by dividing the voltage between V_{REF} and AGND into 1024 equal steps.

3. Differential linearity error

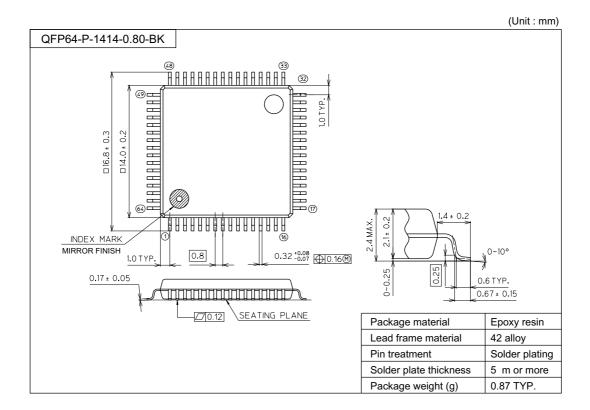
Differential linearity error indicates the smoothness of conversion characteristics. Ideally, the range of analog input voltage that corresponds to 1 converted bit of digital output is $1LSB = (V_{REF} - AGND) \div 1024$. Differential error is the difference between this ideal bit size and bit size of an arbitrary point in the conversion range.


4. Zero scale error

Zero scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 000H to 001H.

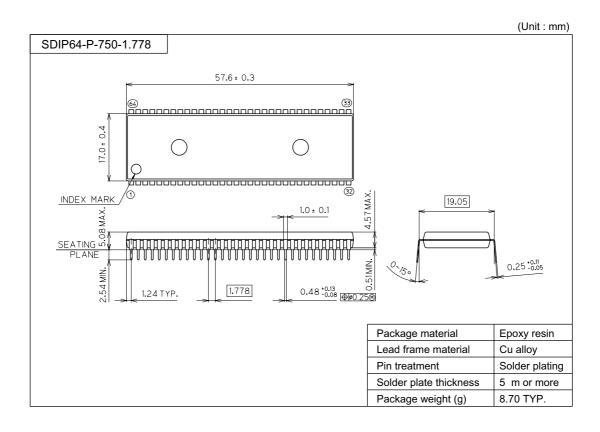
5. Full-scale error

Full-scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 3FEH to 3FFH.


PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Packages

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.


Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Notes for Mounting the Surface Mount Type Packages

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

 Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 1999 Oki Electric Industry Co., Ltd.